Company Overview
April 2020
This presentation contains forward-looking statements that involve substantial risks and uncertainties. All statements, other than statements of historical facts, contained in this presentation, including statements regarding our strategy, future operations, future financial position, future revenues, projected costs, prospects, plans and objectives of management, are forward-looking statements. The words “anticipate,” “believe,” “estimate,” “expect,” “intend,” “may,” “plan,” “predict,” “project,” “target,” “potential,” “will,” “would,” “could,” “should,” “continue,” and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words.

Forward-looking statements are neither historical facts nor assurances of future performance. Instead, they are based only on our current beliefs, expectations and assumptions regarding the future of our business, future plans and strategies, projections, anticipated events and trends, the economy and other future conditions. Because forward-looking statements relate to the future, they are subject to inherent uncertainties, risks and changes in circumstances that are difficult to predict and many of which are outside of our control. We may not actually achieve the plans, intentions or expectations disclosed in our forward-looking statements, and you should not place undue reliance on our forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in the forward-looking statements we make. We assume no obligation to update any forward-looking statements, except as required by applicable law.
Leap Highlights

Oncology drug development company focused on DKN-01, anti-DKK1 antibody

- Strategic partnership and investors
- Strong clinical data
- Expanding indications and combinations through investigator-initiated studies

Esophagogastric & Gynecologic Cancers

Single agent & combination therapy activity

DKK1 biomarker-defined populations

Prostate

Biliary Tract

Eosophagogastric

Hepatocellular
DKK1 in Cancer

- Overexpression of DKK1 linked to poor prognosis
- Tumor cells secrete DKK1 promoting proliferation, metastasis and angiogenesis
- DKK1 suppresses anti-tumor immune responses
- Neutralizing DKK1 activates an innate immune response in oncology models
DKN-01 Global Development Program

Leap Sponsored

<table>
<thead>
<tr>
<th>Indication</th>
<th>ESCALATION</th>
<th>EXPANSION</th>
<th>PIVOTAL</th>
<th>Clinical Partnership^</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gynecologic Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DKN-01 ± paclitaxel in EEC, EOC & carcinosarcoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esophagogastric Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DKN-01 + tislelizumab DKK1-high 2L GEJ/GC and + XELOX in 1L GEJ/GC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Investigator Sponsored

<table>
<thead>
<tr>
<th>Indication</th>
<th>ESCALATION</th>
<th>EXPANSION</th>
<th>PIVOTAL</th>
<th>Clinical Partnership^</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYU: DKN-01 ± docetaxel in DKK1+/Wnt activated 2L+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biliary Tract Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts General Hospital: DKN-01 + nivolumab 2L*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esophagogastric Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Royal Marsden: DKN-01 + atezolizumab 2L**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatocellular Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mainz: DKN-01 ± sorafenib in Wnt activated 1L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* funded 50% by BMS; ** funded 100% by Roche.

^BeiGene has rights to DKN-01 in Asia (excluding Japan), Australia and New Zealand for all indications.
DKN-01
Esophagogastric Cancer Development
Esophagogastric Cancer is an Unmet Medical Need

Esophageal Cancer

- **477,900** New cases per year
- **375,000** Deaths per year

High incidence of esophageal cancer in China
Incidence of gastric cancer in China vs. US/Japan

<table>
<thead>
<tr>
<th>Country</th>
<th>New cases/year</th>
<th>Incidence (per 100K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>478</td>
<td>34</td>
</tr>
<tr>
<td>Japan</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>US</td>
<td>13</td>
<td>4</td>
</tr>
</tbody>
</table>

Gastric Cancer

- **679,100** New cases per year
- **498,000** Deaths per year

High incidence of gastric cancer in Eastern/Asia
Incidence of gastric cancer in China vs. US/Japan

<table>
<thead>
<tr>
<th>Country</th>
<th>New cases/year</th>
<th>Incidence (per 100K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>679</td>
<td>48</td>
</tr>
<tr>
<td>Japan</td>
<td>132</td>
<td>53</td>
</tr>
<tr>
<td>US</td>
<td>23</td>
<td>7</td>
</tr>
</tbody>
</table>

Source: Cancer China statistics 2015, Cancer statistics in Japan 2013, American Cancer Society
Single-Agent Activity in Heavily Pretreated Patients
Esophagogastric Cancer – DKN-01 Monotherapy

On Study 1 Year, Reduction -33.9%
Failed Prior anti-PD-L1 + IDOi

Best Overall Response of 20 Evaluable Patients*

<table>
<thead>
<tr>
<th>Response</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial Response</td>
<td>2</td>
</tr>
<tr>
<td>Stable Disease</td>
<td>6</td>
</tr>
<tr>
<td>Progressive Disease</td>
<td>12</td>
</tr>
</tbody>
</table>

*By central imaging review
PD-1 Monotherapy in Esophagogastric Cancer Patients

<table>
<thead>
<tr>
<th></th>
<th>Second Line</th>
<th>Third Line +</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KN-181 Pembro mono (EA+ESCC)</td>
<td>KN-061 Pembro mono (GEJ/GC)</td>
</tr>
<tr>
<td>N</td>
<td>314</td>
<td>296</td>
</tr>
<tr>
<td>ORR (%)</td>
<td>13.1</td>
<td>11.1</td>
</tr>
<tr>
<td>ORR in MSS Pts (%)</td>
<td>NR</td>
<td>9.3</td>
</tr>
<tr>
<td>PFS months (95% CI)</td>
<td>2.1 (2.1, 2.2)</td>
<td>1.5 (1.4, 1.6)</td>
</tr>
<tr>
<td>OS months (95% CI)</td>
<td>7.1 (6.2, 8.1)</td>
<td>6.7 (5.4, 8.9)</td>
</tr>
</tbody>
</table>

Response Rates and Median Progression-Free Survival Remain Low
Objectives:
Safety and tolerability

Dose Escalation
3+3 design (up to 6 patients)

- 150 mg DKN-01 + 200 mg pembrolizumab (N=2)
- 300 mg DKN-01 + 200 mg pembrolizumab (N=4)
- 300 mg DKN-01 + 200 mg pembrolizumab (N=61)*

Anti-PD-1/PD-L1 naïve
- n=52

Anti-PD-1/PD-L1 refractory
- n=9

Continued Dosing on Study (n=6)

- Anti-PD-1/PD-L1 naïve
 - n=5

- Anti-PD-1/PD-L1 refractory
 - n=1

Discontinued (n=55)
- DKN-01 discontinuation:
 - Documented progressive disease (n=33)
 - Other (n=1)
 - Adverse events (n=2)
- Study discontinuation:
 - Death (n=18)
 - Withdrew consent (n=1)

Total N includes 4 patients from dose escalation
Patient with a partial response:
DKK1 H-score = 163

Patient with progressive disease:
DKK1 H-score = 7
DKK1 Tumor Expression
Anti-PD-1/PD-L1 Naïve Esophagogastric Cancer

- Responding GEJ/GC patients have elevated levels of DKK1
- DKK1 is expressed in tumor cells
Better and More Durable Responses for DKK1-high GEJ/Gastric Cancer Patients Treated with DKN-01 Plus PD-1 Antibody

DKK1-high had an ORR of 50% (5 PR/10) and DCR of 80% (8/10)
Longer PFS for DKK1-high GEJ/Gastric Cancer Patients Treated with DKN-01 Plus PD-1 Antibody

Table: Median PFS (95% CI)

<table>
<thead>
<tr>
<th>Group</th>
<th>Median PFS</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKK1-high</td>
<td>22.1</td>
<td>(5.0, 35.9)</td>
</tr>
<tr>
<td>DKK1-low</td>
<td>5.9</td>
<td>(5.3, 6.9)</td>
</tr>
</tbody>
</table>

Graph:
- **Progression-Free Survival Probability**
- **Weeks on Study**

Legend:
- DKK1-low
- DKK1-high

Figure Caption:
Median PFS longer in DKK1-high (22.1 weeks) vs. DKK1-low (5.9 weeks) patients
Longer OS for DKK1-high GEJ/Gastric Cancer Patients Treated with DKN-01 Plus PD-1 Antibody

Median OS longer in DKK1-high (31.6 weeks) vs. DKK1-low (17.4 weeks) patients
PD-L1 CPS Scores Not Associated with PFS

<table>
<thead>
<tr>
<th>CPS Status</th>
<th>Median (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS Negative</td>
<td>11.7 (2.0, 22.1)</td>
</tr>
<tr>
<td>CPS Positive – low</td>
<td>6.1 (5.0, 12.1)</td>
</tr>
<tr>
<td>CPS Positive – high</td>
<td>6.9 (5.1, 31.6)</td>
</tr>
</tbody>
</table>
PD-L1 CPS Scores Not Associated with OS

Overall Survival Probability

<table>
<thead>
<tr>
<th></th>
<th>Median (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS Negative</td>
<td>17.4 (2.0, 43.7)</td>
</tr>
<tr>
<td>CPS Positive – low</td>
<td>21.8 (5.6, 60.9)</td>
</tr>
<tr>
<td>CPS Positive – high</td>
<td>18.3 (8.7, NA)</td>
</tr>
</tbody>
</table>

Weeks on Study

CPS Negative
- 7
- 6
- 5
- 4
- 3
- 2
- 2
- 1
- 1
- 0
- 0
- 0
- 0

CPS Positive – low
- 13
- 11
- 9
- 8
- 7
- 5
- 4
- 4
- 3
- 2
- 2
- 2
- 0

CPS Positive – high
- 0
- 5
- 15
- 20
- 25
- 30
- 35
- 40
- 45
- 50
- 55
- 60
- 65
Study Design in Patients with Advanced Gastric/GEJ Adenocarcinoma

Assess the Safety and Anti-tumor Activity of DKN-01 in Combination with Tislelizumab +/- Chemo

Cohort 1:
- DKK-1 H
- DKN-01 + Tislelizumab
- N= 40
- Get ORR and safety of tislelizumab combo in DKK-1 H patients
- Biomarker-Driven/Chemo-free Indication in 2L GC

Cohort 2:
- DKN-01 + Tislelizumab/XELOX
- N= 20
- Get ORR and safety of tislelizumab/chemo combo
- Next wave IO combination Indication in 1L GC

Eligible pts assigned to cohorts

1L All comers

2L DKK1-high
DKN-01 Plus Paclitaxel Esophagogastric Study Design

Study Design

- **Day 1**: Biopsy
- **Day 8**: DKN-01 + Paclitaxel 80 mg/m²
- **Day 15**: Biopsy
- **Day 22**: Biopsy

Tumor Assessment At End of Even Cycles

<table>
<thead>
<tr>
<th></th>
<th>DKN-01 150 mg + pac N=3</th>
<th>DKN-01 300 mg + pac N=56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median, range)</td>
<td>56 (47, 73)</td>
<td>62.5 (34, 82)</td>
</tr>
<tr>
<td>Male (n, %)</td>
<td>3 (100)</td>
<td>43 (76.8)</td>
</tr>
<tr>
<td>White</td>
<td>3 (100)</td>
<td>48 (85.7)</td>
</tr>
<tr>
<td>Type of Cancer (n, %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esophageal Squamous</td>
<td>-</td>
<td>13 (23.2)</td>
</tr>
<tr>
<td>Esophageal AC</td>
<td>1 (33.3)</td>
<td>12 (21.4)</td>
</tr>
<tr>
<td>GEJ AC</td>
<td>2 (66.7)</td>
<td>29 (51.8)</td>
</tr>
<tr>
<td>Gastric</td>
<td>-</td>
<td>2 (3.6)</td>
</tr>
<tr>
<td>Prior Therapy (median, range)</td>
<td>4 (2, 7)</td>
<td>2 (1, 6)</td>
</tr>
<tr>
<td>Taxane (n, %)</td>
<td>3 (100)</td>
<td>27 (48.2)</td>
</tr>
<tr>
<td>Ramucirumab (n, %)</td>
<td>1 (33.3)</td>
<td>7 (12.5)</td>
</tr>
</tbody>
</table>
Clinical Activity of DKN-01 Plus Paclitaxel
Evaluable Esophagogastric Patients by Tumor Location

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Patients Treated</th>
<th>Prior Therapies</th>
<th>Overall Response Rate</th>
<th>Stable Disease Rate</th>
<th>Disease Control Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKN-01 + paclitaxel</td>
<td>52</td>
<td>1-7</td>
<td>25%</td>
<td>35%</td>
<td>60%</td>
</tr>
</tbody>
</table>

N=52

Tumor Types
- GEI/GC
- ESCC
- EC AC

+ = PD, - = PR, no symbol = SD
DKN-01 Plus Paclitaxel Exceeds Benchmarks in Second-Line Esophagogastric Cancer

<table>
<thead>
<tr>
<th></th>
<th>2nd Line</th>
<th>Study</th>
<th>n</th>
<th>ORR (%)</th>
<th>DCR (%)</th>
<th>PFS (months)</th>
<th>OS (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKN-01 + pac</td>
<td></td>
<td></td>
<td>15</td>
<td>46.7%</td>
<td>73.3%</td>
<td>4.5</td>
<td>14.1</td>
</tr>
<tr>
<td>Ram + pac</td>
<td></td>
<td>RAINBOW</td>
<td>330</td>
<td>28%</td>
<td>80%</td>
<td>4.4</td>
<td>9.6</td>
</tr>
<tr>
<td>Pac</td>
<td></td>
<td>RAINBOW</td>
<td>335</td>
<td>16%</td>
<td>64%</td>
<td>2.9</td>
<td>7.4</td>
</tr>
<tr>
<td>Chemo</td>
<td></td>
<td>KN-181</td>
<td>314</td>
<td>6.7%</td>
<td>-</td>
<td>3.4</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Tumor Types
- GEJ/GC
- ESCC
- EC AC

Chart showing the ORR, DCR, PFS, and OS for different tumor types.
DKN-01
Gynecologic Cancer Development
DKN-01 Phase 2 Study Design

Primary objective:
Objective response rate (ORR)

Secondary objectives:
Exploring genetic mutations in the Wnt signaling pathway and tumoral DKK1 expression as predictive biomarkers

Eligible Patients
- Recurrent EEC
- Recurrent platinum-resistant/refractory EOC
- Recurrent MMMT
- ≥ 1 prior therapy
- Measurable disease
- 50% in each group with Wnt signaling alteration

Data as of 30 Dec 2019. EEC: epithelial endometrial cancer; EOC: epithelial ovarian cancer; MMMT: carcinosarcoma (malignant mixed Mullerian tumor)

Primary objective: Objective response rate (ORR)

Secondary objectives: Exploring genetic mutations in the Wnt signaling pathway and tumoral DKK1 expression as predictive biomarkers

Eligible Patients
- Recurrent EEC
- Recurrent platinum-resistant/refractory EOC
- Recurrent MMMT
- ≥ 1 prior therapy
- Measurable disease
- 50% in each group with Wnt signaling alteration

Data as of 30 Dec 2019. EEC: epithelial endometrial cancer; EOC: epithelial ovarian cancer; MMMT: carcinosarcoma (malignant mixed Mullerian tumor)

Basket study (NCT03395080) evaluating DKN-01 as monotherapy or in combination with paclitaxel in advanced gynecologic malignancies
Wnt Genetic Groups

Wnt Signaling Alterations
Genes that are associated with the Wnt signaling pathway, either directly or tangentially

Genes: \textit{CTNNB1, APC, AXIN1/2, RNF43, ZNRF3, RSPO2/3, WISP3, TNKS2, TERT, SOX9, SOX2, SLIT2, PAX5, NOTCH1, MLL2, LTK, LRP1B, GSK3B, GREM1, FOXP1, FBXW7, FAM123B, CREB, CDH20, CDC73, ARID1A and APCDD1}

Wnt Activating Mutations
A well defined subgroup of the genes associated with Wnt Signaling Alterations

- Alterations that result in active Wnt/β-catenin dependent signaling
- Genes: \textit{CTNNB1, APC, AXIN1/2, RNF43, ZNRF3, RSPO2/3}

<table>
<thead>
<tr>
<th>Gene</th>
<th>Genetic alteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{CTNNB1 (β-catenin)}</td>
<td>Protein stabilizing alteration (missense mutation of S33, S37, T41 or S45; exon 3 missense mutation or inframe deletion of all or part of exon 3)</td>
</tr>
<tr>
<td>\textit{APC}</td>
<td>Loss of function alteration (truncation or deletion)</td>
</tr>
<tr>
<td>\textit{AXIN1/2}</td>
<td>Loss of function alteration (truncation or deletion)</td>
</tr>
<tr>
<td>\textit{RNF43}</td>
<td>Loss of function alteration (truncation or deletion)</td>
</tr>
<tr>
<td>\textit{ZNRF3}</td>
<td>Loss of function alteration (truncation or deletion)</td>
</tr>
<tr>
<td>\textit{RSPO2}</td>
<td>Fusion protein (EIF3E-RSPO2)</td>
</tr>
<tr>
<td>\textit{RSPO3}</td>
<td>Fusion protein (PTPRK-RSPO3)</td>
</tr>
</tbody>
</table>
DKN-01 Was Well Tolerated as Monotherapy and in Combination with Paclitaxel

- Related SAEs: DKN-01 monotherapy: 4.5% and DKN-01 + paclitaxel combination: 6.4%
- No TEAEs which led to death

Most Common DKN-01 Related TEAEs

Monotherapy:
- Nausea (43.8%)
- Fatigue (43.8%)

Combination therapy:
- Anemia (35.0%)
- Fatigue (32.5%)
- Diarrhea (30.0%)
- Nausea (25.0%)

DKN-01 Related TESAEs

Monotherapy:
- Nausea (2.3%)
- Acute kidney injury (2.3%)

Combination therapy:
- Hypokalemia (2.1%)
- Anemia (2.1%)
- Paresthesia (2.1%)
- Colitis (2.1%)
Endometrial Cancer and Carcinosarcoma Patients have Higher DKK1 Expression than Ovarian Cancer Patients

![Box plot comparing DKK1 expression in EEC (N=36), EOC (N=27), and MMMT (N=5) patients.](image)
Endometrial Cancer

- Most common gynecological cancer in the western world
- ~62,000 annual cases in the United States and the incidence is increasing
- Fourth most common cancer in women in the US
- Clinical risk factors include estrogen-only hormone replacement, obesity, chronic anovulation, tamoxifen therapy, nulliparity, early menarche, and late menopause
DKN-01 Has Single Agent Activity in Endometrial Cancer

Best Overall Response

<table>
<thead>
<tr>
<th>EEC</th>
<th>Evaluable (n)</th>
<th>CR</th>
<th>PR</th>
<th>SD</th>
<th>PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wnt Signaling Alterations</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>No Identified Wnt Alterations</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Data as of 30 Dec 2019.
DKN-01 Has Single Agent Activity in Endometrial Cancer

<table>
<thead>
<tr>
<th>Therapy Type and Tumor Genetics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wnt Altered</td>
</tr>
<tr>
<td>Non Wnt Altered</td>
</tr>
</tbody>
</table>

- 20% increase
- 30% decrease

<table>
<thead>
<tr>
<th>EEC</th>
<th>Evaluable (n)</th>
<th>CR</th>
<th>PR</th>
<th>SD</th>
<th>PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wnt Signaling Alterations</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>No Identified Wnt Alterations</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Data as of 30 Dec 2019.
Monotherapy Complete Response in Endometrial Cancer Patient

- Resection followed by vaginal cuff brachytherapy. Recurred in right psoas muscle and received local XRT, then carboplatin and paclitaxel which was poorly tolerated with neuropathy and thrombocytopenia
- Enrolled in July 2018 with Wnt signaling alterations: ARID1A, MLL2, PIK3CA
- Deepening of tumor reduction with each scan, developed PR (-37.5%) after 8 cycles, cPR after 10 cycles (-56.2%); CR after 14 cycles, cCR after 16 cycles
- Continues on DKN-01 monotherapy with no evidence of residual disease
DKN-01 Plus Paclitaxel Generated Robust Disease Control in Paclitaxel-Experienced EEC patients

Data as of 30 Dec 2019.
Uterine Carcinosarcoma (Malignant Mixed Mullerian Tumor)

- Malignant uterine neoplasm comprised of carcinomatous and sarcomatous elements
- Accounts for < 5% of all uterine cancer
- Aggressive, poor prognosis
 - 50% diagnosed with metastatic disease beyond the pelvis
 - 5-year survival of 9-22% for advance stage disease
- Poor response to chemotherapy

GOG 0261: Primary Outcome Uterine Cohort: OS

- 37 mo PC vs. 29 mo PI: 8.3 mo difference
- Adjusted treatment death hazard ratio is 0.87
- The 90% CI 0.70 to 1.075.
- p-value < 0.01. Rejects the null hypothesis: inferiority
 Superiority: Not significant (p=0.14); one-tailed
DKN-01 Monotherapy Generated Durable Clinical Benefit in Pretreated Carcinosarcoma Patients

Best Overall Response

<table>
<thead>
<tr>
<th>DKN-01 Monotherapy</th>
<th>Evaluable</th>
<th>PR</th>
<th>SD</th>
<th>PD</th>
<th>Pending</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMMT</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Data as of 30 Dec 2019. Two patients enrolled after data cut-off date.
DKN-01 Plus Paclitaxel Demonstrating Durable Responses in Pretreated Carcinosarcoma Patients

Target Tumor Volume Change Over Time

- 20% increase
- 30% decrease

DKN-01 Dose:
- MMMT-300mg
- MMMT-600mg

<table>
<thead>
<tr>
<th>DKN-01 + Paclitaxel</th>
<th>Evaluable</th>
<th>PR</th>
<th>SD</th>
<th>PD</th>
<th>Pending</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMMMT</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Data as of 30 Dec 2019. Five patients enrolled after data cut-off date.
Analysis of Tumor Genetics and DKK1 RNAscope Expression

102 Patients with Available Genetic Data*

- EEC
 - N = 52
 - DKK1 RNAscope
 - N = 36

- EOC
 - N = 33
 - DKK1 RNAscope
 - N = 27

- MMMT
 - N = 17
 - DKK1 RNAscope
 - N = 5

*Only patients in the full analysis set were included
DKK1 High Expression Is Associated with Wnt Activating Mutations

- 22% patients (15/68) had high DKK1; 67% of DKK1 high patients (10/15) had Wnt activating mutations
- Patients with/without Wnt activating mutations: Median DKK1 H-score 78.5 vs. 5
- Tumors with Wnt activating mutations have a 15.7 times higher tumoral DKK1
- DKK1-high was associated with Wnt activating mutations

*DKK1 H-score was considered “high” if >38 (based on optimal cut in PFS analysis)
**Wilcoxon rank sum test with continuity correction
Longer PFS in DKK1 High Patients Treated with DKN-01 Monotherapy

Progression Free Survival

- 21.9% of DKN-01 monotherapy treated patients were considered as DKK1-high.
- Median PFS was 168 days in DKK1-high vs. 56 days in DKK1-low group.

Data as of 30 Dec 2019.
• 21.9% of DKN-01 monotherapy treated patients were considered as DKK1 high
• Median OS was 450 days in DKK1 high vs. 276 days in DKK1 low group

Data as of 30 Dec 2019.
DKN-01
Strategy
Leap-BeiGene Strategic Partnership

DKN-01 DEVELOPMENT
Option and License Agreement

- **Upfront Payment**: $8M
- **Option Fee**: $3M
- **Equity Investment**: $5M

> $10M
Option exercise fee
Based on data from DKN-01 plus tislelizumab combination studies in gastric cancer

$132M
Total Option Exercise, Clinical, Regulatory, and Commercial Milestones

Royalties
High-single digit to mid-teen double digits

Asia (excluding Japan), Australia, and New Zealand
Management Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christopher Mirabelli, PhD</td>
<td>Chairman of the Board</td>
</tr>
<tr>
<td>Douglas Onsi</td>
<td>President & Chief Executive Officer</td>
</tr>
<tr>
<td>Gus Lawlor</td>
<td>Chief Operating Officer</td>
</tr>
<tr>
<td>Cyndi Sirard, MD</td>
<td>Chief Medical Officer</td>
</tr>
<tr>
<td>Mark O’Mahony</td>
<td>Chief Manufacturing Officer</td>
</tr>
<tr>
<td>Walter Newman, PhD</td>
<td>Senior Research Fellow</td>
</tr>
</tbody>
</table>
Leap 2020 Objectives and Milestones

Initiation: 2H 2020
DKN-01 + tislelizumab gastric cancer clinical trial

- **First-line patients**
 combination with chemotherapies

- **Second-line patients**
 DKK1-high

Support investigator-initiated studies

- **Prostate**
- **Biliary Tract**
- **Esophagogastric**
- **Hepatocellular**